If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x^2+96x+5=0
a = 16; b = 96; c = +5;
Δ = b2-4ac
Δ = 962-4·16·5
Δ = 8896
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{8896}=\sqrt{64*139}=\sqrt{64}*\sqrt{139}=8\sqrt{139}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(96)-8\sqrt{139}}{2*16}=\frac{-96-8\sqrt{139}}{32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(96)+8\sqrt{139}}{2*16}=\frac{-96+8\sqrt{139}}{32} $
| 30t=45(t-3/4) | | -2/3(w-4/5)=12/15 | | -3(6x-5)+8=-18x+23 | | 11y+4=22y-73 | | 13x-8+8x=-9x-22 | | 2(w2+3)=w(2w+2) | | 340-8x=60+5 | | -3(6x+5)+8=18x+23 | | 6.6=-5+x | | 117+14m=355 | | 6+x=49 | | 10p+11-5p=11+5p | | 26=u/4-10 | | (31n)-104=299 | | 4x-4=4(x+4) | | 7x-11=4x-58 | | 35h+20h=125 | | 2/5x-4=7/3 | | 35h+20=25 | | x-32=6x+8 | | 6(1-m)=3(1-m) | | 4x-20=54 | | (2x)-38=28 | | 14-23p+1)=6(4+p) | | -9x+4(2x-7)=-39-6x | | 4(2.50-5.25a)=0 | | 3+5a=8+3a | | 8g-24=5g-10 | | 2x+20+50=6x+10 | | 9x+41=5(x+9) | | 3/4(x-6)=2 | | 4(v-3)=-7v+43 |